Learn R Programming

fda.usc (version 1.2.3)

gridfdata, rcombfdata: Utils for generate functional data

Description

gridfdata generates n curves as lineal combination of the original curves fdataobj plus a functional trend mu.

rcombfdata generates n random combinations of the fdataobj curves plus a functional trend mu. The coefficients of the combinations follows a normal distribution with zero mean and standard deviation sdarg.

Usage

gridfdata(coef,fdataobj,mu)
rcombfdata(n = 10, fdataobj, mu, sdarg = rep(1,nrow(fdataobj)), norm = 1)

Arguments

coef
Coefficients of the combination. A matrix with number of columns equal to number of curves in fdataobj
fdataobj
fdata class object.
mu
Functional trend, by default mu=$\mu(t)=0$. An object of class fdata.
n
Number of curves to be generated
sdarg
Standard deviation of the coefficients.
norm
Norm of the coefficients. The norm is adjusted before the transformation for sdarg is performed.

Value

Return the functional trajectories as a fdata class object.

See Also

See Also as rproc2fdata

Examples

Run this code
tt=seq(0,1,len=51)
fou3=create.fourier.basis(c(0,1),nbasis=3)
fdataobj=fdata(t(eval.basis(tt,fou3)),argvals=tt)

coef=expand.grid(0,seq(-1,1,len=11),seq(-1,1,len=11))
grid=gridfdata(coef,fdataobj)
plot(grid,lty=1)

rcomb=rcombfdata(n=51,fdataobj,mu=fdata(30*tt*(1-tt),tt))
plot(rcomb,lty=1)

Run the code above in your browser using DataLab